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We modify the directed-loop algorithm �DLA� to solve the problem that typically arises from large on-site
interaction. The large on-site interaction is inevitable when one tries to simulate a Bose gas system in con-
tinuum by discretizing the space with small lattice spacings. While the efficiency of a straightforward appli-
cation of DLA decreases as the mesh becomes finer, the performance of the new method does not depend on
it except for the trivial factor due to the increase in the number of lattice points.
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I. INTRODUCTION

Bose-Einstein condensation �BEC� in atomic gases
trapped in an external potential was observed in a laboratory
in 1995 �1�. Since then, the bosonic systems have been stud-
ied extensively. A recent focus of attention is the quantum
phase transition from a superfluid to a Mott insulator in a gas
of ultracold atoms �2�. The experiment was carried out in a
three-dimensional optical lattice potential. The atoms move
freely all over the lattice in the superfluid phase. The transi-
tion occurs as the depth of the lattice potential is increased.
After the transition, each atom is localized at an individual
lattice site. Another topic of current interest is the observa-
tion of the supersolid phase in the solid 4He �3�. Kim and
Chan observed an anomaly in the rotational inertia at the
critical temperature. Several theoretical investigations were
carried out, such as Monte Carlo simulations of Bose sys-
tems on a two-dimensional triangular lattice �4–7� and in a
continuous space �8�.

The Monte Carlo sampling of world-line configurations
based on the Feynman path integral is one of the most effi-
cient presently-known method to deal with such bosonic sys-
tems. There are a few variants of the method designed for
continuous bosonic systems that we discuss in the present
paper. In their pioneering work, Ceperley and Pollock �9,10�
approximated world lines by jagged lines in continuous real
space and discrete imaginary time. An update cycle of world-
line configurations is executed in two steps, the first step
with the “bisection method” and second with the “permuta-
tion sampling method.” Using these methods, they simulated
the superfluid transition in a system of N=64 4He atoms in
three dimensions. Quantities such as energy and diagonal
correlations were successfully calculated.

However, in order to calculate off-diagonal quantities
such as the superfluid fraction �S accurately, we must con-
sider larger number of atoms. Recently, to solve this prob-
lem, Boninsegni et al. �11� generalized the worm algorithm,
which is originally developed for lattice systems and has
capability to treat a large number of degrees of freedom, to
the continuous cases. In their method, the world lines are
treated as jagged lines as in the method of Ceperley et al.
However, updates of world-line configurations are achieved
by using a worm that consists of a pair of discontinuity
points. One of the discontinuity points, hereafter referred to
as the head, moves stochastically in the space-time and

changes the local state on the way. To be more specific, an
update cycle is a combination of four sets of processes called
“open/close,” “insert/remove,” “advance/recede,” and
“swap.” The “open” and “insert” operations create a worm
whereas the “close” and “remove” operations annihilate it.
The “advance/recede” operation slides the head along the
vertical �i.e., temporal� direction, and the “swap” operation
makes the head hop horizontally to a vertical line adjacent to
the one on which it is currently located. Using these opera-
tions, one could deal with much more atoms.

While this seems to have solved the problem of handling
a large number of atoms, from the technical point of view the
method based on the time discretization is rather different
from other worm algorithms on discrete space, requiring pro-
grammers to write different programs. In this article, we in-
troduce a simpler approach to continuous systems that is the
most natural extension of the worm algorithm and can profit
directly from the existing computer codes based upon the
discrete space. We simply discretize a continuous system to
make it a simple-cubic-lattice system with lattice spacing b
as shown in Sec. II, and adopt directed-loop algorithm
�DLA� �12,13�. However, straightforward application fails to
yield an efficient algorithm as we discuss below, which may
be the reason why this approach has not been taken so far. In
what follows we show how we solve this problem.

The DLA, which is a hybrid of the loop algorithm and the
worm algorithm, has very wide applicability. From world-
line configurations we generate graphs in a similar way to
the loop algorithm, and then we update world-line configu-
rations by creating a worm and letting it move around in a
similar way to the worm algorithm. Unlike the original worm
algorithm, however, the head’s direction of motion is altered
only at vertices that are distributed stochastically before the
creation of the worm. Vertices are placed between two ver-
tical lines adjacent to each other, or on a single line. In the
former case, a vertex represents a two-body interaction and is
visualized as a short horizontal line connecting two vertical
lines, whereas in the latter case it represents a one-body in-
teraction and is visualized as a dot placed on a vertical line.
In either case, they are distributed stochastically with some
density determined by the diagonal matrix element of the
Hamiltonian. For a more detailed description, see, for ex-
ample, Ref. �13�. However, when one applies the method to
a system such as the Bose-Hubbard model with t�U �t is the
hopping amplitude and U is the on-site energy�, the effi-
ciency of the straight-forward application of the DLA is low
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because of high density of vertices due to large U. In the
present paper, we first discuss this difficulty in Sec. III A.
Then, we improve the DLA by omitting the vertices gener-
ated by the interaction U and taking it into account in other
procedures. We also demonstrate the efficiency of the result-
ing method by applying it to the interacting dilute Bose gas
system with a large U.

II. BOSE GAS SYSTEM AND SPACE DISCRETIZATION

In this paper, we focus on dilute Bose gas systems �14�.
We here consider the case of three dimensions for concrete-
ness, although the generalization to other cases is straightfor-
ward. The Hamiltonian of the interacting Bose gas system in
the continuous space is defined as

H0 =� dr� �2

2m
� �̂†�r� · ��̂�r� − ��̂†�r��̂�r��

+
1

2
� � dr�dr�̂†�r��̂†�r��U�r − r���̂�r���̂�r� .

�1�

The operators �̂ and �̂† are field operators of bosons that

fulfill the commutation relation ��̂�r� ,�̂†�r���=��r−r��, and
� is the chemical potential. We consider only the contribu-
tion of s-wave scattering, that is, U�r−r��=U0��r−r��,
where U0 is defined as U0=4��2a /m, with a being the
s-wave scattering length. We assume the repulsive interac-
tion a�0.

To simulate the continuous system, we discretize it with a
small lattice spacing b. The Hamiltonian is then transformed
to the following:

H = t�
R

�
�

	�	̂R+�
† 	̂R+� + 	̂R

† 	̂R� − �	̂R+�
† 	̂R + 	̂R

† 	̂R+��


− ��
R

	̂R
† 	̂R +

u

2�
R

	̂R
† 	̂R

† 	̂R	̂R, �2�

where t��2 / �2mb2� and u�U0 /bd. In this transformation,
we have replaced integrals by sums, �dr→bd�R, and Dirac’s
delta function by Kronecker’s delta, ��r−r��→b−d�RR�. The

field operator �̂†�r���̂�r�� has been replaced by the operator

	̂R
† �	̂R�, which creates �annihilates� a boson at the site R,

�̂�r� → b−�d/2�	̂R
† . �3�

Then, these operators fulfill the commutation relation
�	̂R , 	̂R�

† �=�RR�. Note that the on-site interaction u / t be-
comes larger, as we make the lattice spacing b smaller in
order to reduce the discretization error.

Now we have five length scales, three physical and two
artificial. The physical length scales are the mean particle
distance l, the de Broglie wave length 
dB, and the s-wave
scattering length a whereas the artificial two are the lattice
spacing b and the system size �. In order to make the simu-
lation result accurate, the lattice spacing must be smaller
than any one of the three physical length scales, and the

system size must be larger than any one of the three; b� l
��, b�
dB��, and b�a��. In what follows, we con-
sider the case where a l
dB. The condition l
dB is to
study the phase transitions of BEC. The other condition a
 l is to study the effect of the interaction. �The effect of the
interaction is recognizable only if the two-body interaction
energy is comparable to �or larger than� the kinetic energy.
The interaction energy is Eint�U0, where �= l−3, namely,
Eint�a / l3, whereas the kinetic energy is Ekin�
dB

−2  l−2.
Therefore, the kinetic energy and the interaction energy are
comparable when a l.�

In the DLA, weights of configurations with the worm are

determined by adding the source term simQ̂ to the Hamil-

tonian. Therefore, we consider the Hamiltonian H−simQ̂,

where sim is a tunable parameter. The operator Q̂ is the sum

of local operators, Q̂=�R�d�		̂R
† ���+ 	̂R���
 /2, where � is

imaginary time.

III. METHOD

In this section, we first describe the difficulty that arises
from a large on-site interaction. Then, we present a new tech-
nique that eliminates this difficulty.

A. The conventional DLA and its problem in the case of
fine mesh

In the DLA, the Boltzmann weight of world-line configu-
rations is reflected by the density of vertices. A vertex is
defined either on a single space-time point �one-site vertex�
or on a pair of points that have the same temporal coordinate
and different spatial ones �two-site vertex�. While the one-
site vertices represent one-body interactions such as the U
term in the Hubbard model, the two-site vertices correspond
to two-body interactions such as the kinetic energy term.
Two-site vertices are placed between two vertical lines with
the density �ij��ij�= ��ij�−Hij��ij� when the Hamiltonian is
the sum of local terms, i.e., H=��i,j�Hij. The indices i and j
specify spatial positions �namely, sites� and �ij��ij� is the
density of vertices that connects the sites i and j. The symbol
�ij stands for the state of these two sites at the imaginary
time at which the vertices are to be placed. All the diagonal
elements of the Hamiltonian need to be negative because the
density must be positive. We therefore introduce some con-
stant real number EU, and replace the original Hamiltonian
by H�=H−EU, whose diagonal elements are all negative. In
what follows, we denote the new Hamiltonian simply as H.

In the region t�u, namely, �2b /m�U0, the constant EU
should be chosen such that EU�nmax

2 U0 / �2b3�, where nmax is
the cutoff of the occupation number, which we fix in ad-
vance. In dilute gases, the most probable state is the one in
which both the site i and j are vacant. In this state, the ver-
tices are placed with density �ij �nmax

2 U0 / �2b3�, which di-
verges as b→0. Although in most cases a worm head simply
passes the vertex without changing the direction, this passage
consumes a finite amount of CPU time, and as b→0 this
process becomes the most time consuming part of the whole
computation. Therefore, it would be highly desirable to find
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a way to avoid such a waste of computer resources. The
modification of DLA described in the next subsection keeps
the number of the vertices from diverging when the mesh
becomes finer.

B. Modification of directed-loop algorithm

We here propose a method in which only the two-site
interaction term is reflected in the density of the vertices and
the one-site term �i.e., the U term� is treated separately. For
this purpose, we define the Hamiltonian �2� as the sum of the
U term and the rest: H=Ht+HU, where HU is HU

= �u /2��R	̂R
† 	̂R

† 	̂R	̂R. An update cycle of the new method
includes assignment of two-site vertices and placement of
the worm, with the densities and the probabilities obtained
by the conventional DLA prescription applied to Ht. The
new ingredient, which takes care of HU, is the stochastic
determination of passage of a segment delimited by the two
vertices. In other words, in contrast to the conventional
DLA, the head may not reach the next vertex �i.e., the other
end of the segment that lies ahead of it�. As a result, in
addition to the scattering probability for determining the out-
going direction of the head after scattered by the two-site
vertex, we need to introduce a segment-passage probability
with which we allow the head to reach the next vertex. The
segment-passage probability reflects HU as described below.

We start from the Suzuki-Trotter decomposition of the
Boltzmann factor. Assuming that Ht is expressed as Ht

=�b=1
M Hb

t with b specifying a pair of nearest neighbor sites,
the partition function can be expressed as

Z = lim
L→�

�
	�


�
k=1

L

�
b=1

M

���b�k + 1�� �
G=0,1

�− ��Hb
t �G��b�k��

��
i=1

N

��b�k��e−��Hi
U
��b�k�� , �4�

where ��=� /L. Based on this expression, let us consider the
hypothetical process depicted in Fig. 1 by which the worm’s
head transforms a state into another. By examining the
change in the weight of the corresponding intermediate state,
we may obtain the proper segment-passage probability.

In Fig. 1, w� denotes the total weight of the state �
=0,1 , . . . ,5. Note that vertical moves of the head change the
total weight because of the U term. Denoting the probability
of the transition from the state � to the state � as t��, the
detailed-balance condition to be fulfilled by this hypothetical
process is

t54t43t32t21t10w0 = t01t12t23t34t45w5. �5�

The probabilities of scattering at the vertices �i.e., t12, t34, t43,
t21� are determined by the conventional DLA prescription for
Ht. The probabilities of the head’s vertical move �i.e., t01, t23,
t45, t54, t32, t10� are obtained from the Metropolis method, i.e.,

tij =
min�wi,wj�

wj
, �6�

which automatically satisfy Eq. �5�. For the present model,
for example, the probability of a head passing a segment
whose length is � and occupation number is n is t+=e−un� if
the head increases the local occupation number. On the other
hand, if it decreases the occupation number, the passage
probability is always 1, i.e., t−=1.

Obviously no single-site vertex is placed in the new
method. Therefore, this method solves the problem of too
many one-site vertices that would be generated if we applied
the conventional DLA prescription to the whole Hamiltonian
in a straight-forward fashion. In fact, the procedure described
above could be obtained by “renormalizing” the single-site
vertices as we discuss in the next subsection and also in
Appendix A. In the straightforward DLA �applied to the
whole Hamiltonian�, vertices are placed with the density �
unmax

2 . In contrast, in the modified DLA, the density of
two-site vertices is � tnmax. The total CPU time is propor-
tional to the density of vertices, because the most time-
consuming part of the code is spent on the head’s passing �or
scattering� at vertices. Therefore, the CPU time for the
straightforward DLA is roughly O�anmax/b� times larger
than that for the modified DLA.

C. Measured quantities

In a simulation with the conventional DLA, we measure
the two-point correlation function as the frequency of
worm’s head visiting a particular position. As a result, the
susceptibility is reduced to the average length of the path of
the head. However, because of the modification we make,
this simple relation must be modified as we see below.

Let us first consider the conventional DLA with one-site
vertices and an event where the head is bounced at some
two-site vertex vA, as shown in Fig. 2. We interpret this event
as that the head first passes the vertex vA, proceed for a
distance l, and turns back at a one-site vertex v that is located
there. Let the length of the segment along which the head
travels be �0, and consider a uniform random number R
� �0,1�. Then, the distance l is determined as

FIG. 1. �Color online� One example of the path that the worm
updates the configuration: the triangle and the circle, respectively,
show the head and the tail.

FIG. 2. �Color online� An imaginary process where the head
turns back at and passes through one-site vertex.
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l = �0
ln�1 − R�

ln t
. �7�

�If l��0, we let the head proceed to the next vertex vB with-
out bouncing.� Equation �7� is consistent with the result of
the conventional DLA which explicitly deals with the one-
site vertices. For the derivation of Eq. �7�, see Appendix A.

In the present paper, we focus on two physical quantities,
two-point correlation function in the real space C�R ,R�� de-
fined as

C�R,R�� � �	̂R
† 	̂R�� , �8�

and susceptibility � defined as

� = �
0

�

d��
R

�	̂0
†���	̂R�0�� , �9�

where � means the imaginary time and � the inverse tem-
perature. If the system under consideration is homogeneous,
C�R ,R�� depends only on relative position R−R�. We con-
sider an event that the head visits a point of which the space-
time coordinate is �R ,0�. �Here, the origin of the coordinate
is the position of the worm’s tail.� We define nvisit�R� as the
number of occurrence of such events in a cycle �i.e., from a
worm’s creation to its annihilation�. We also define lw as the
average traveling length of the head per cycle. It is necessary
to count hypothetical processes as shown in Fig. 2 when we
measure nvisit and lw. In other words, when the head turns
back at a vertex vA in the modified DLA algorithm, we
should regard it as that the head actually passes vA once,
reach an imaginary one-site vertex v, turns around there, and
comes back to vA, as shown in Fig. 2. With this interpreta-
tion, the quantities C�R� and � can be obtained from nvisit�R�
and lw as

C�R� = �nmax −
1

2
�nvisit�R� , �10a�

� = �nmax −
1

2
�lw. �10b�

IV. SIMULATION

A. Technical parameters

In the simulations discussed below, we set the upper
bound on the occupation number as n�nmax=5, which en-
sures that ��nmaxb

−3 with � being the density of particles.
We also choose sim=�2/ 	V��2nmax−1�
, where V is the
volume of the system and � the inverse temperature. This is
the largest possible choice of all feasible values. If sim is
larger than this value, the probability of generation of a
worm in some cases becomes negative. For each set of simu-
lation, we start from the vacuum state with no particles. The
first ndump sweeps are just for equilibrating the system, and
not counted. Then, successive nMCS sweeps are counted for
the measurement. We use ndump2500 and nMCS10 000.

Since we simulate the grand canonical ensemble, the
number of particles fluctuates freely. However, in the case of

the ideal Bose gas system discussed in the next subsection,
varying temperature with fixed average occupation �, instead
of fixed chemical potential �, is more convenient because we
cannot observe a phase transition at a finite � in the thermo-
dynamic limit. Therefore, we have adjusted the chemical po-
tential � at each temperature so as to make the average den-
sity � takes some constant value fixed in advance. In order to
choose the right value of �, we have employed the steepest
descent method. In the case of the interacting Bose gas sys-
tem, on the other hand, we investigated the temperature de-
pendence of various quantities with fixed �.

B. Space-discretization of ideal Bose gas system

In order to demonstrate the efficiency of the algorithm, we
first consider the ideal Bose gas system because it is a con-
venient test case for which the exact solution is available. In
this case, the algorithm reduces to a conventional DLA.

For a cubic system whose liner size is �, the correlation
function is

C�r,�� =
1

�3�
k

cos k · r

e��ck2−�� − 1
, �11�

where c=�2 / �2m� and the summation is taken for k
= �2� /���nx ,ny ,nz�, with nx, ny, and nz being integers rang-
ing from 0 to �. The convergence in the continuum limit can
be clearly seen in Fig. 3 that shows the correlation function
C�r ,�=8� for various coarseness of space discretization.
The correlation is measured along the diagonal direction, i.e.,
r= �r ,r ,r�. In all the simulations presented in Fig. 3, the
chemical potentials � is adjusted to make the particle density
approximately 0.1.

We next see the finite-size scaling properties of the sus-
ceptibility �. Figure 4 shows the finite size scaling of �.
More specifically, we assume the form �=�2−�̃�t�1/��. The
calculation has been done with density �=0.1, and the lattice
spacing b=1/2. The values of the critical exponents used for
the fitting are =0 and �=1, the exact values for the ideal
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0.1

0 1 2 3 4 5 6 7

<
Ψ

*
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)Ψ
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β=1.5/(4c), exact solution
β=1.5/(4c), L=8

β=1.5/(4c), L=12
β=1.5/(4c), L=16

β=3.6/(4c), exact solution
β=3.6/(4c), L=8

β=3.6/(4c), L=12
β=3.6/(4c), L=16

FIG. 3. �Color online� The two-point Green’s function of the
ideal Bose gas at �=1.5/ �4c�, 3.6/ �4c�, and nmax=5. L=� /b. �nmax

may not be large enough in the case L=8, �=3.6/ �4c� and this may
introduce small errors to the data.�
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gas �see Appendix B�. A relative temperature t is defined as
t�T−Tc. For Tc, we use the value for the continuous system.
In principle, the exact critical temperature of the discrete
system differs from that of the continuous system. Neverthe-
less, the finite size scaling with Tc for the continuous system
works well, which implies that the lattice spacing b is suffi-
ciency small. �See Appendix C for more details of the con-
vergence of physical quantities in the limit of b→0.�

C. Modified directed-loop algorithm for Bose gas system with
interaction

Having seen how the present method works for the non-
interacting model, we next demonstrate the validity of the
method in a more nontrivial case. We take the hopping en-
ergy t as our unit of energy and the double of the lattice
spacing 2b as our unit of distance below. We fix the chemical
potential as �=0.5, and choose the values of the interaction
energy as u=96.0 �a�1.91�. From the finite size scaling of
�, as we see below, we estimate the critical temperature as
Tc=0.76±0.01. The average particle distance l is measured

as l=1.414�2�, where the system size is �=8, and the in-
verse temperature is �=1.3. Therefore, our choice of physi-
cal parameters fulfills the requirement for a reasonable ap-
proximation �i.e., b�a�� and b� l���.

Because of the symmetry of the Hamiltonian �2�, the criti-
cal phenomena of this system should belong to the univer-
sality class of the XY model in three dimensions. According
to a recent work �15�, critical exponents of the XY model in
three dimensions are

� = 0.6723�3� , �12a�

 = 0.0381�2� . �12b�

Figure 5�a� shows the finite size scaling of � using these
values of the exponents. On the other hand, the values of the
ideal Bose gas are used in Fig. 5�b� for the same set of the
data for comparison. At a first glance, the ideal gas expo-
nents seem to fit the data better than the ones for the three-
dimensional XY model. However, we can see that this is not
so when we take a closer look at the critical region. In
Fig. 5�a�� and Fig. 5�b�� are the enlarged views of Fig. 5�a�
and Fig. 5�b�, respectively. Whereas agreement of the curves
with different system sizes becomes better as one approaches
the critical point in �a� and �a��, we can observe a clear
systematic deviation from a single curve in �b� and �b��.

The apparent better agreement for the ideal gas universal-
ity class in Figs. 5�a� and 5�b� is the result of the crossover
from the noninteracting regime to the interacting regime.
Since we have studied the case of a weak interaction, this
crossover makes the asymptotic scaling region rather narrow
in temperature. In order not to be deceived by the apparent
behavior and to identify the correct universality class, we
need a very accurate numerical simulation and a careful
analysis. The present case demonstrates that the new method
is indeed efficient enough to distinguish between universality
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FIG. 4. �Color online� Finite size scaling of the integrated
Green’s function with �c=2.802, b=1/2.
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FIG. 5. �Color online� Finite-
size-scaling plots of the integrated
one-body Green’s function: �a�
with the exponents of XY model
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t stands for T−Tc.
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classes and discuss the correct scaling properties.

V. DISCUSSION

In this section, we first take a closer look at the efficiency
of the new method and compare it with the conventional
DLA. Table I shows the CPU time spent for the simulation
on a single processor of SGI Altix 3700 for two methods. In
both cases, the same number of Monte Carlo sweeps have
been carried out. The resulting accuracy of various quantities
are roughly the same. As an example, the estimated average
occupation number together with its estimated statistical er-
ror are presented in Table I. As is also clear from the table,
the calculation with the modified DLA has been executed
about 36 times faster and the memory usage has been re-
duced by the factor of 93%.

In this article, we have studied the space-discretized Bose
gas systems Eq. �2�. We have demonstrated the validity of
the space-discretization approach to the continuous limit by
simulating the noninteracting and interacting Bose gas sys-
tem. For the interacting system with the repulsive interac-
tion, we have argued that the straightforward application of
the conventional DLA is not practical since the relative mag-
nitude of the interaction in the discretized model u / t always
becomes large as we make the lattice spacing smaller b→0
in order to reduce the systematic error due to the discretiza-
tion. We have therefore modified the DLA to solve the prob-
lem. By this modification we eliminate all the single-site
vertices that would result from the interaction u, improving
the efficiency of simulations dramatically. Finally, we have
demonstrated that the new scheme, i.e., the space discretiza-
tion with the modified DLA, is a promising approach to the
phase transitions in the interacting Boson systems by pre-
senting some results of the simulations using the new
method.

ACKNOWLEDGMENTS

The simulations are carried out at the Supercomputer
Center, Institute for Solid State Physics, University of Tokyo.
The present work is financially supported by MEXT Grant-
in-Aid for Scientific Research �B� 19340109 �2007� and by
Next Generation Supercomputing Project, Nanoscience Pro-
gram, MEXT, Japan.

APPENDIX A: MEASUREMENT OF THE WORM LENGTH

After being scattered at a two-site vertex, say v1, the head
travels along a segment that is delimited by v1 and another
vertex, say v2. In the straightforward application of the DLA,
in general, there are many one-site vertices on this segment.
The head may or may not be scattered at one of these one-
site vertices. If it is scattered once, it comes back to v1,
whereas if it is not scattered at any one-site vertex, it goes
through the segment and reaches v2. As we have seen in Sec.
III B, we can compute the probability of the head returning
to v1 or going through to v2 without performing passing/
scattering events at one-site vertices. Therefore, we do not
have to deal with one-site vertices in real computation. Here,
we use the original picture again, in order to obtain formulas
for computing two-point correlation functions and the sus-
ceptibility. Once we obtain the formulas, we can compute
these quantities in real computation without scattering at
one-site vertices.

We first decompose the Hamiltonian as H=Ht+HU. The
term HU can be expressed as HU=�iU�ni� where U�ni�
��u /2�ni�ni−1�. Then, vertices arising from HU, namely
one-site vertices, can be expressed as dots on a vertical line.
For a vertical line that corresponds to the site i, the vertices
should be placed on it with imaginary-time dependent den-
sity Wk=U�ni����, where ni��� is the occupation number on
the site i and at the imaginary time of �. In real computation,
this vertex placement is achieved by two steps as follows.
First, we stochastically generate nv, the total number of ver-
tices to be placed on a segment, according to Poisson distri-
bution

Pnv
����� =

�����nv

nv!
e−���, �A1�

where �� is the length of the segment. Then, we place nv
vertices on the segment simply by generating nv independent
uniform random numbers in the interval �0,���.

Next, we consider the probability of the head passing/
bouncing at a single-site vertex. This is formally written as
t��, the transition probability to a state � from a state �.
Denoting the weight of the state � as w�, we write the tran-
sition probability as t��=w�� /w�. Then, w�� must satisfy
two conditions w��=w��, and w�=��w��. Figure 6 shows an
example of w�� satisfying these conditions. A cross denotes a
single-site vertex, and a triangle the head in Fig. 6. For the
scattering at the single-site vertex, we have to consider the
vertex weight Wk only since other factors would not be
changed by the scattering. In Fig. 6, we assume nmax=2 and
w32=0 for the sake of simplicity.

Figure 7 schematically shows a possible motion of the
worm’s head along a vertical segment whose length is ��.
Changing the local state behind it from k to k+1, the head
passes all the single-site vertices until it finally arrives at a
vertex in the imaginary time interval ��0+ l ,�0+ l+dl� where
�0 is the imaginary time of the last visited two-site vertex.
We here assume that Wk+1�Wk. Then, the probability of this
process being chosen is a product of three probabilities:

TABLE I. Comparison between the modified DLA and the con-
ventional DLA. The system size is �=6� �2b�, The parameters are
chosen as follows: the chemical potential as �=0.01t, the inverse
temperature as �t=3.0, the s-wave scattering length as a=2.0
� �2b�, the maximum occupation number as nmax=5, the number of
sweeps for sampling as nMCS=51 200, and the number of sweeps
for equilibration as ndump=2500.

Conventional Modified

CPU time �s� 8.7�105 2.4�104

Maximum number of vertices 6.5�105 4.8�104

Average number of vertices 6.4�105 2.3�104

Estimated average occupation number 0.011 23�3� 0.011 19�4�
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P�l�dl = � �
nv=0

�

Pnv
�lWk��Wk+1

Wk
�nv� � �Wkdl� � �1 −

Wk+1

Wk
� .

�A2�

The first factor is the probability of the head traveling the
distance l without being scattered by any vertex. The second
is the probability of finding a vertex in the interval l l+dl.
The third is the probability that the head is bounced back
there. Thus we obtain the density

P�l� = �Wk − Wk+1�e−�Wk−Wk+1�l. �A3�

In order to take into account the contributions from the
imaginary round trip between the two-site vertex and the
one-site vertex, we have only to generate a random number l
according to the distribution P�l� and add 2l to the traveling
length every time the head fails to pass a segment. In fact,
the decision of passing or bounce and, in the case of bounce,
the calculation of the length of the imaginary roundtrip can
be done at the same time as follows. Every time the head
leaves a two-site vertex, we generate l according to P�l�, i.e.,
generate a uniform random number R and define

l �
�ln R�

Wk − Wk+1
. �A4�

If l���, where �� is the length of the segment that lies
ahead of the head, we let the head move to the next two-site
vertex and add �� to the working sum of the traveling
length. If not, we let the head turn around and add 2l to the
sum.

APPENDIX B: THE SCALING LAW OF THE
IDEAL BOSE GAS

In this section, we derive the critical exponents � and  of
the ideal Bose gas. The exponents are defined as �� t−�, and
C�r��=�c

�1/rd−2+, where � is correlation length, t is relative
temperature T−Tc, and C�r� is the correlation function de-
fined as

C��r�� � ��̂†�0��̂�r�� . �B1�

The particle density of the ideal Bose gas near the criticality
is given by

�  T3/2�A − B�−
�

T
� , �B2�

where A and B are the coefficients in the expansion of the
Appell function �16�

F�y� � �
0

�

dx
�x

ex+y − 1
� A − B�y . �B3�

Therefore, with fixed density we obtain the temperature de-
pendence of � as

� � −
3A

2BTc
t2. �B4�

We can express the correlation function of the infinite con-
tinuous system C�r� as

C�r� = �0 +
1

�2��3�
l=1

� �� �

lc�
�3

exp�l�� −
r2

4lc�
� ,

�B5�

where �0 is density of condensate and c=�2 / �2m�. Note
that the exponent in the summand has a peak at l= l*

=r / 	2���−��
. We therefore expand it around l*. Up to the
second order in x� l− l*, we obtain

l�� −
r2

4lc�
� 2l*�� +

��

l* x2. �B6�

Then, the second term of Eq. �B5� is reduced to

1

�2��3�
l=1

� �� �

lc�
�3

exp�l�� −
r2

4lc�
�

�
1

�2��3�
−�

�

dx�� �

l*c�
�3

exp�2l*�� +
��

l* x2� ,

FIG. 6. �Color online�. The weight w��. A triangle and a cross
represent the head of the worm and a single-site vertex,
respectively.

FIG. 7. �Color online�. The motion of the head which turns back
at �0+ l.

MODIFICATION OF DIRECTED-LOOP ALGORITHM FOR… PHYSICAL REVIEW E 75, 066703 �2007�

066703-7



=
�c

4��r
exp�−

r
�c/�− ��� , �B7�

which yields �=�c / �−��. Using the t dependence of � �Eq.
�B4��, we find

� = 1. �B8�

In addition, because the chemical potential is �=0 at T=Tc,
it is found that the correlation function is C�r��=�c

�1/r,
which means

 = 0. �B9�

APPENDIX C: CONVERGENCE OF PHYSICAL
QUANTITIES

For the ideal Bose gas, by exploiting the exact solution,
we can clarify how the density of particle � of a discrete
system converges to the continuous limit. For kb�1, the
dispersion relation is

�k�b� � ck2 − Akb2 − � , �C1�

where Ak=c�kx
4+ky

4+kz
4� /12 whereas this term is absent in

the case of the continuous system.
We consider the deviation of density �����b ,��

−��0,�� where ��b ,�� denotes the density at the lattice
spacing b and the chemical potential �. Then, �� is approxi-
mated as

�� �
1

V��
k
� 1

e��ck2−Akb2−�� − 1
−

1

e��ck2−�� − 1
�

+ �
k�b−1

1

e��ck2−�� − 1� ,

�
1

V
�

k

e��ck2−���Akb2

	e��ck2−�� − 1
2
� b2. �C2�

In deriving the second line, we have ignored the last term in
the first line because it decays exponentially as b→0 and
becomes negligible, assuming that b is smaller than the de
Broglie wavelength 
dB.

Figure 8 shows ��. Here we take � /8 as the unit of
length and 4c as the unit of energy. We compute exact solu-
tions for the lattice system of varying lattice spacing b at two
temperatures �=1.5,3.6 using the exact dispersion relation
for the cubic lattice. We choose �=−0.2 at �=1.5 and �=
−0.8�10−2 at �=3.6. Correspondingly, the de Broglie wave-
length is 
dB�2.171 at �=1.5 and 
dB�3.363 at �=3.6.
Solid straight lines, representing ���b2, are drawn for com-
parison. The agreement between these lines and computation
results is satisfactory in both cases, confirming the validity of
the b dependence derived above.
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FIG. 8. �Color online�. The deviation of the density �� vs the
lattice spacing b for two sets of parameters �� ,��= �1.5,−0.2� and
�3.6,−0.08�. Straight lines represent 0.00712�b2 and 0.04365
�b2. The resulting particle density of the continuous system is
roughly 0.1 for both sets of parameters.
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